ORCID: https://orcid.org/0000-0003-1679-1727; Höglinger, Günter
ORCID: https://orcid.org/0000-0001-7587-6187; Lang, Anthony E. und Vieira, Tuane C. R. G.
(2025):
Protein misfolding: understanding biology to classify and treat synucleinopathies.
In: Journal of Neural Transmission [Forthcoming]
Abstract
Protein misfolding and aggregation is a major pathological hallmark in a variety of human conditions, including cancer, diabetes, and neurodegeneration. However, we still do not fully understand the role of protein accumulation in disease. Interestingly, recent breakthroughs in artificial intelligence (AI) are having a tremendous impact on our ability to predict three-dimensional protein structures and understand the molecular rules governing protein folding/misfolding. This progress will enable us to understand how intrinsic and extrinsic factors trigger protein misfolding, thereby changing protein function. These changes, in some cases, are related to normal biological responses and, in other cases, associated with pathological alterations, such as those found in many neurodegenerative disorders. Here, we provide a brief historical perspective of how findings in the field of prion diseases and prion biology have enabled tremendous advances that are now forming the basis for our understanding of disease processes and discuss how this knowledge is now emerging as central for our ability to classify, diagnose, and treat devastating neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Munich Cluster for Systems Neurology (SyNergy)
Medizin > Institut für Schlaganfall- und Demenzforschung (ISD) Medizin > Klinikum der LMU München > Neurologische Klinik und Poliklinik mit Friedrich-Baur-Institut |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISSN: | 0300-9564 |
Sprache: | Englisch |
Dokumenten ID: | 124671 |
Datum der Veröffentlichung auf Open Access LMU: | 26. Mrz. 2025 14:10 |
Letzte Änderungen: | 26. Mrz. 2025 14:10 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |