ORCID: https://orcid.org/0000-0002-1231-4985; Heid, Stefan; Fürnkranz, Johannes und Hüllermeier, Eyke
ORCID: https://orcid.org/0000-0002-9944-4108
(2025):
Probabilistic scoring lists for interpretable machine learning.
In: Machine Learning, Bd. 114, Nr. 3
[PDF, 2MB]

Abstract
A scoring system is a simple decision model that checks a set of features, adds a certain number of points to a total score for each feature that is satisfied, and finally makes a decision by comparing the total score to a threshold. Scoring systems have a long history of active use in safety-critical domains such as healthcare and justice, where they provide guidance for making objective and accurate decisions. Given their genuine interpretability, the idea of learning scoring systems from data is obviously appealing from the perspective of explainable AI. In this paper, we propose a practically motivated extension of scoring systems called probabilistic scoring lists (PSL), as well as a method for learning PSLs from data. Instead of making a deterministic decision, a PSL represents uncertainty in the form of probability distributions, or, more generally, probability intervals. Moreover, in the spirit of decision lists, a PSL evaluates features one by one and stops as soon as a decision can be made with enough confidence. To evaluate our approach, we conduct case studies in the medical domain and on standard benchmark data.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
URN: | urn:nbn:de:bvb:19-epub-124765-3 |
ISSN: | 0885-6125 |
Sprache: | Englisch |
Dokumenten ID: | 124765 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Mrz. 2025 08:33 |
Letzte Änderungen: | 17. Mrz. 2025 08:33 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 438445824 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 160364472 |