
Abstract
eciprocal learning (as introduced at the 1st LuWSI Workshop) generalizes several learning paradigms, ranging from active learning over multi-armed bandits to self-training. These methods not only learn parameters from data, but also vice versa: They iteratively alter the training data as a function of previously learned parameters. In my talk at the 2nd LuWSI Workshop, I will address the elephant in the room: How well can these algorithms generalize from such self-selected samples?
Dokumententyp: | Vortrag |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik
Mathematik, Informatik und Statistik > Statistik > Lehrstühle/Arbeitsgruppen > Method(olog)ische Grundlagen der Statistik und ihre Anwendungen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme
500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-125767-9 |
Dokumenten ID: | 125767 |
Datum der Veröffentlichung auf Open Access LMU: | 26. Jun. 2025 05:23 |
Letzte Änderungen: | 26. Jun. 2025 05:23 |