Logo Logo
Hilfe
Hilfe
Switch Language to English

Spiller, Lukas ORCID logoORCID: https://orcid.org/0000-0002-7214-1983; Zhang, Lin ORCID logoORCID: https://orcid.org/0000-0001-8463-2141; Gerra, Simona ORCID logoORCID: https://orcid.org/0009-0005-6061-5124; Stoppe, Christian ORCID logoORCID: https://orcid.org/0000-0002-2028-2039; Scheiermann, Patrick ORCID logoORCID: https://orcid.org/0000-0001-7334-3096; Calandra, Thierry ORCID logoORCID: https://orcid.org/0000-0003-3051-1285; Lolis, Elias ORCID logoORCID: https://orcid.org/0000-0002-7902-7868; Panstruga, Ralph ORCID logoORCID: https://orcid.org/0000-0002-3756-8957; Bernhagen, Jürgen ORCID logoORCID: https://orcid.org/0000-0003-2996-2652 und Hoffmann, Adrian ORCID logoORCID: https://orcid.org/0009-0000-0661-2321 (2025): In vivo synergistic enhancement of MIF‐mediated inflammation in acute lung injury by the plant ortholog ArabidopsisMDL1. In: The FASEB Journal, Bd. 39, Nr. 6, e70489 [PDF, 1MB]

Abstract

Recent research has uncovered Arabidopsis thaliana proteins that are similar to the human inflammatory cytokine MIF. Plant MIF/D-dopachrome tautomerase (D-DT)-like proteins (MDLs) can interact with human MIF, yet the significance of these findings in living organisms has not been investigated. Given MIF's key role in acute respiratory distress syndrome promoting pulmonary inflammation, pathology, and leukocyte infiltration, here we set out to investigate the interplay between MIF and MDL1, one of three A. thaliana MIF orthologs, in an in vivo mouse model of MIF-induced acute lung injury (ALI). Human MIF and MDL1 were administered to C57BL/6 mice via inhalation, individually or in combination. Inhalation of MIF promoted various parameters of lung injury as evaluated by flow cytometry, immunofluorescence microscopy, RT-qPCR, and ELISA, while MDL1 inhalation alone had no effect. Intriguingly, combined treatment with MIF and MDL1 synergistically enhanced pulmonary infiltration of neutrophils and monocytic cells, accompanied by an upregulation of pro-inflammatory cytokine genes. Thus, the plant-derived MIF ortholog MDL1 potentiates MIF-induced inflammation in ALI. These data support the growing evidence of interactions between plant-derived compounds and human inflammatory mediators and illustrate how they may impact human health.

Dokument bearbeiten Dokument bearbeiten