Logo Logo
Hilfe
Hilfe
Switch Language to English

Singh, Devesh ORCID logoORCID: https://orcid.org/0009-0003-9931-0710; Grazia, Alice ORCID logoORCID: https://orcid.org/0000-0001-8861-3183; Reiz, Achim ORCID logoORCID: https://orcid.org/0000-0003-1446-9670; Hermann, Andreas ORCID logoORCID: https://orcid.org/0000-0002-7364-7791; Altenstein, Slawek ORCID logoORCID: https://orcid.org/0000-0003-2753-5999; Beichert, Lukas ORCID logoORCID: https://orcid.org/0009-0000-9259-9230; Bernhardt, Alexander ORCID logoORCID: https://orcid.org/0000-0002-2572-5062; Buerger, Katharina ORCID logoORCID: https://orcid.org/0000-0002-5898-9953; Butryn, Michaela; Dechent, Peter ORCID logoORCID: https://orcid.org/0009-0006-4005-3352; Duezel, Emrah; Ewers, Michael ORCID logoORCID: https://orcid.org/0000-0001-5231-1714; Fliessbach, Klaus; Freiesleben, Silka D. ORCID logoORCID: https://orcid.org/0000-0002-2141-8671; Glanz, Wenzel ORCID logoORCID: https://orcid.org/0000-0002-5865-4176; Hetzer, Stefan ORCID logoORCID: https://orcid.org/0000-0002-1773-1518; Janowitz, Daniel ORCID logoORCID: https://orcid.org/0009-0003-4090-547X; Kilimann, Ingo ORCID logoORCID: https://orcid.org/0000-0002-3269-4452; Kimmich, Okka ORCID logoORCID: https://orcid.org/0009-0008-2119-7590; Laske, Christoph; Levin, Johannes ORCID logoORCID: https://orcid.org/0000-0001-5092-4306; Lohse, Andrea; Luesebrink, Falk ORCID logoORCID: https://orcid.org/0000-0001-5770-0727; Munk, Matthias ORCID logoORCID: https://orcid.org/0000-0002-5339-4045; Perneczky, Robert ORCID logoORCID: https://orcid.org/0000-0003-1981-7435; Peters, Oliver ORCID logoORCID: https://orcid.org/0000-0003-0568-2998; Preis, Lukas ORCID logoORCID: https://orcid.org/0000-0001-7601-6410; Priller, Josef ORCID logoORCID: https://orcid.org/0000-0001-7596-0979; Prudlo, Johannes; Rauchmann, Boris S. ORCID logoORCID: https://orcid.org/0000-0003-4547-6240; Rostamzadeh, Ayda ORCID logoORCID: https://orcid.org/0000-0001-5189-134X; Roy-Kluth, Nina; Scheffler, Klaus ORCID logoORCID: https://orcid.org/0000-0001-6316-8773; Schneider, Anja; Schneider, Luisa S. ORCID logoORCID: https://orcid.org/0000-0001-5822-1744; Schott, Björn H. ORCID logoORCID: https://orcid.org/0000-0002-8237-4481; Spottke, Annika; Spruth, Eike J. ORCID logoORCID: https://orcid.org/0000-0002-8976-7309; Synofzik, Matthis ORCID logoORCID: https://orcid.org/0000-0002-2280-7273; Wiltfang, Jens ORCID logoORCID: https://orcid.org/0000-0003-1492-5330; Jessen, Frank; Teipel, Stefan J. ORCID logoORCID: https://orcid.org/0000-0002-3586-3194 und Dyrba, Martin ORCID logoORCID: https://orcid.org/0000-0002-3353-3167 (2025): A computational ontology framework for the synthesis of multi-level pathology reports from brain MRI scans. In: Journal of Alzheimer’s Disease [Forthcoming]

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Background: Convolutional neural network (CNN) based volumetry of MRI data can help differentiate Alzheimer's disease (AD) and the behavioral variant of frontotemporal dementia (bvFTD) as causes of cognitive decline and dementia. However, existing CNN-based MRI volumetry tools lack a structured hierarchical representation of brain anatomy, which would allow for aggregating regional pathological information and automated computational inference.

Objective: Develop a computational ontology pipeline for quantifying hierarchical pathological abnormalities and visualize summary charts for brain atrophy findings, aiding differential diagnosis.

Methods: Using FastSurfer, we segmented brain regions and measured volume and cortical thickness from MRI scans pooled across multiple cohorts (N = 3433; ADNI, AIBL, DELCODE, DESCRIBE, EDSD, and NIFD), including healthy controls, prodromal and clinical AD cases, and bvFTD cases. Employing the Web Ontology Language (OWL), we built a semantic model encoding hierarchical anatomical information. Additionally, we created summary visualizations based on sunburst plots for visual inspection of the information stored in the ontology.

Results: Our computational framework dynamically estimated and aggregated regional pathological deviations across different levels of neuroanatomy abstraction. The disease similarity index derived from the volumetric and cortical thickness deviations achieved an AUC of 0.88 for separating AD and bvFTD, which was also reflected by distinct atrophy profile visualizations.

Conclusions: The proposed automated pipeline facilitates visual comparison of atrophy profiles across various disease types and stages. It provides a generalizable computational framework for summarizing pathologic findings, potentially enhancing the physicians’ ability to evaluate brain pathologies robustly and interpretably.

Dokument bearbeiten Dokument bearbeiten