ORCID: https://orcid.org/0009-0000-4065-1535; Wolf, Maximilian A.; Marso, Marwa; Ross, Philipp; Lorenz, Jeanette M.; Riofrío, Carlos A. und Luckow, Andre
(19. August 2024):
Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK.
In: KI - Künstliche Intelligenz, Bd. 38: S. 379-385
[PDF, 1MB]

Abstract
Quantum computing promises a disruptive impact on machine learning algorithms, taking advantage of the exponentially large Hilbert space available. However, it is not clear how to scale quantum machine learning (QML) to industrial-level applications. This paper investigates the scalability and noise resilience of quantum generative learning applications. We consider the training performance in the presence of statistical noise due to finite-shot noise statistics and quantum noise due to decoherence to analyze the scalability of QML methods. We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms, and show how characterization of QML systems can be accelerated, simplified, and made reproducible when the QUARK framework is used. We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik |
URN: | urn:nbn:de:bvb:19-epub-126205-3 |
ISSN: | 0933-1875 |
Sprache: | Englisch |
Dokumenten ID: | 126205 |
Datum der Veröffentlichung auf Open Access LMU: | 28. Mai 2025 13:04 |
Letzte Änderungen: | 28. Mai 2025 13:04 |