ORCID: https://orcid.org/0000-0003-2177-7794 und Kutyniok, Gitta
ORCID: https://orcid.org/0000-0001-9738-2487
(2019):
Learning sparse representations on the sphere.
In: Astronomy & Astrophysics, Bd. 621, A73
[PDF, 6MB]

Abstract
Many representation systems on the sphere have been proposed in the past, such as spherical harmonics, wavelets, or curvelets. Each of these data representations is designed to extract a specific set of features, and choosing the best fixed representation system for a given scientific application is challenging. In this paper, we show that one can directly learn a representation system from given data on the sphere. We propose two new adaptive approaches: the first is a (potentially multiscale) patch-based dictionary learning approach, and the second consists in selecting a representation from among a parametrized family of representations, the α-shearlets. We investigate their relative performance to represent and denoise complex structures on different astrophysical data sets on the sphere.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-126401-1 |
ISSN: | 1432-0746 |
Sprache: | Englisch |
Dokumenten ID: | 126401 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Mai 2025 10:35 |
Letzte Änderungen: | 27. Mai 2025 10:35 |