Abstract
Translating notions and results from category theory to the theory of computability models of Longley and Normann, we introduce the Grothendieck computability model. We define the first-projection-simulation and prove its basic properties. With the Grothendieck computability model, the category of computability models is shown to be a type-category, in the sense of Pitts, a result that bridges the categorical interpretation of dependent types with the theory of computability models. We also show that the category of computability models is a category with 2-family arrows and a corresponding structure of Sigma-objects. Finally, we introduce the notion of a fibration and opfibration-simulation, and we prove that the first-projection-simulation is a split opfibration-simulation.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| URN: | urn:nbn:de:bvb:19-epub-129134-0 |
| ISSN: | 03043975 |
| Sprache: | Englisch |
| Dokumenten ID: | 129134 |
| Datum der Veröffentlichung auf Open Access LMU: | 30. Okt. 2025 07:07 |
| Letzte Änderungen: | 30. Okt. 2025 07:07 |
