ORCID: https://orcid.org/0000-0002-7338-5584 und Mettler, Thomas
ORCID: https://orcid.org/0000-0002-9129-9495
(2022):
Deformations of the Vernonese embedding and Finsler 2-Spheres of constant curvature.
In: Journal of the Institute of Mathematics of Jussieu, Bd. 21, Nr. 6: S. 2103-2134
[PDF, 835kB]
Abstract
We establish a one-to-one correspondence between, on the one hand, Finsler structures on the 2 -sphere with constant curvature 1 and all geodesics closed, and on the other hand, Weyl connections on certain spindle orbifolds whose symmetric Ricci curvature is positive definite and whose geodesics are all closed. As an application of our duality result, we show that suitable holomorphic deformations of the Veronese embedding P(a1,a2)→CP(a1,(a1+a2)/2,a2) of weighted projective spaces provide examples of Finsler 2-spheres of constant curvature whose geodesics are all closed.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| URN: | urn:nbn:de:bvb:19-epub-129484-5 |
| ISSN: | 1474-7480 |
| Sprache: | Englisch |
| Dokumenten ID: | 129484 |
| Datum der Veröffentlichung auf Open Access LMU: | 13. Nov. 2025 12:15 |
| Letzte Änderungen: | 13. Nov. 2025 12:15 |
