ORCID: https://orcid.org/0000-0002-0531-6309; Melograna, Federico; Ulm, Brittany; Bellenguez, Céline
ORCID: https://orcid.org/0000-0002-1240-7874; Grenier-Boley, Benjamin; Duroux, Diane; Nevado, Alejo J.; Holmans, Peter
ORCID: https://orcid.org/0000-0003-0870-9412; Tijms, Betty M.
ORCID: https://orcid.org/0000-0002-2612-1797; Hulsman, Marc
ORCID: https://orcid.org/0000-0002-9889-3606; Rojas, Itziar de
ORCID: https://orcid.org/0000-0002-2148-381X; Campos-Martin, Rafael
ORCID: https://orcid.org/0000-0002-1395-8571; Lee, Sven van der
ORCID: https://orcid.org/0000-0003-1606-8643; Castillo, Atahualpa; Küçükali, Fahri
ORCID: https://orcid.org/0000-0002-3835-9639; Peters, Oliver
ORCID: https://orcid.org/0000-0003-0568-2998; Schneider, Anja
ORCID: https://orcid.org/0000-0001-9540-8700; Dichgans, Martin
ORCID: https://orcid.org/0000-0002-0654-387X; Rujescu, Dan
ORCID: https://orcid.org/0000-0002-1432-313X; Scherbaum, Norbert
ORCID: https://orcid.org/0000-0003-1759-6990; Steen, Kristel Van
ORCID: https://orcid.org/0000-0001-9868-5033; Duijn, Cornelia van
ORCID: https://orcid.org/0000-0002-2374-9204 und Escott-Price, Valentina
ORCID: https://orcid.org/0000-0003-1784-5483
(2025):
Machine learning in Alzheimer’s disease genetics.
In: Nature Communications, Bd. 16, 6726
[PDF, 3MB]
Abstract
Traditional statistical approaches have advanced our understanding of the genetics of complex diseases, yet are limited to linear additive models. Here we applied machine learning (ML) to genome-wide data from 41,686 individuals in the largest European consortium on Alzheimer’s disease (AD) to investigate the effectiveness of various ML algorithms in replicating known findings, discovering novel loci, and predicting individuals at risk. We utilised Gradient Boosting Machines (GBMs), biological pathway-informed Neural Networks (NNs), and Model-based Multifactor Dimensionality Reduction (MB-MDR) models. ML approaches successfully captured all genome-wide significant genetic variants identified in the training set and 22% of associations from larger meta-analyses. They highlight 6 novel loci which replicate in an external dataset, including variants which map to ARHGAP25, LY6H, COG7, SOD1 and ZNF597. They further identify novel association in AP4E1, refining the genetic landscape of the known SPPL2A locus. Our results demonstrate that machine learning methods can achieve predictive performance comparable to classical approaches in genetic epidemiology and have the potential to uncover novel loci that remain undetected by traditional GWAS. These insights provide a complementary avenue for advancing the understanding of AD genetics.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Medizin > Munich Cluster for Systems Neurology (SyNergy) |
| Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
| URN: | urn:nbn:de:bvb:19-epub-129935-5 |
| ISSN: | 2041-1723 |
| Bemerkung: | for full list auf authors see publication |
| Sprache: | Englisch |
| Dokumenten ID: | 129935 |
| Datum der Veröffentlichung auf Open Access LMU: | 01. Dez. 2025 08:40 |
| Letzte Änderungen: | 01. Dez. 2025 08:40 |
| DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |
