ORCID: https://orcid.org/0000-0002-9461-7372; Kornowicz, Jaroslaw
ORCID: https://orcid.org/0000-0002-5654-9911; Hanselle, Jonas
ORCID: https://orcid.org/0000-0002-1231-4985; Thommes, Kirsten
ORCID: https://orcid.org/0000-0002-8057-7162 und Hüllermeier, Eyke
ORCID: https://orcid.org/0000-0002-9944-4108
(2025):
MSL: Multi-class Scoring Lists for Interpretable Incremental Decision-Making.
The 3rd World Conference on Explainable Artificial Intelligence (xAI 2025), Istanbul, Turkey, 9. -11. July 2025.
In: Explainable Artificial Intelligence,
Bd. 2578
Springer, Cham. S. 117-139
[PDF, 1MB]
Abstract
A scoring list is a sequence of simple decision models, where features are incrementally evaluated and scores of satisfied features are summed to be used for threshold-based decisions or for calculating class probabilities. In this paper, we introduce a new multi-class variant and compare it against previously introduced binary classification variants for incremental decisions, as well as multi-class variants for classical decision-making using all features. Furthermore, we introduce a new multi-class dataset to assess collaborative human-machine decision-making, which is suitable for user studies with non-expert participants. We demonstrate the usefulness of our approach by evaluating predictive performance and compared to the performance of participants without AI help.
| Dokumententyp: | Konferenzbeitrag (Paper) |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
| Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
| URN: | urn:nbn:de:bvb:19-epub-130910-6 |
| ISBN: | 978-3-032-08327-2 |
| ISSN: | 1865-0929 |
| Sprache: | Englisch |
| Dokumenten ID: | 130910 |
| Datum der Veröffentlichung auf Open Access LMU: | 09. Jan. 2026 13:56 |
| Letzte Änderungen: | 09. Jan. 2026 13:56 |
