Abstract
We survey and compare model-based approaches to regression for cross-sectional and longitudinal data which extend the classical parametric linear model for Gaussian responses in several aspects and for a variety of settings. Additive models replace the sum of linear functions of regressors by a sum of smooth functions. In dynamic or state space models, still linear in the regressors, coefficients are allowed to vary smoothly with time according to a Bayesian smoothness prior. We show that this is equivalent to imposing a roughness penalty on time-varying coefficients. Admitting the coefficients to vary with the values of other covariates, one obtains a class of varying-coefficient models (Hastie and Tibshirani, 1993), or in another interpretation, multiplicative models. The roughness penalty approach to non- and semiparametric modelling, together with Bayesian justifications, is used as a unifying and general framework for estimation. The methodological discussion is illustrated by some real data applications.
Dokumententyp: | Paper |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1405-5 |
Sprache: | Englisch |
Dokumenten ID: | 1405 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |