Abstract
An interesting epidemiological problem is the analysis of geographical variation in rates of disease incidence or mortality. One goal of such an analysis is to detect clusters of elevated (or lowered) risk in order to identify unknown risk factors regarding the disease. We propose a nonparametric Bayesian approach for the detection of such clusters based on Green's (1995) reversible jump MCMC methodology. The prior model assumes that geographical regions can be combined in clusters with constant relative risk within a cluster. The number of clusters, the location of the clusters and the risk within each cluster is unknown. This specification can be seen as a change-point problem of variable dimension in irregular, discrete space. We illustrate our method through an analysis of oral cavity cancer mortality rates in Germany and compare the results with those obtained by the commonly used Bayesian disease mapping method of Besag, York and Mollie (1991).
Dokumententyp: | Paper |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1496-4 |
Sprache: | Englisch |
Dokumenten ID: | 1496 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |