Abstract
An interesting epidemiological problem is the analysis of geographical variation in rates of disease incidence or mortality. One goal of such an analysis is to detect clusters of elevated (or lowered) risk in order to identify unknown risk factors regarding the disease. We propose a nonparametric Bayesian approach for the detection of such clusters based on Green's (1995) reversible jump MCMC methodology. The prior model assumes that geographical regions can be combined in clusters with constant relative risk within a cluster. The number of clusters, the location of the clusters and the risk within each cluster is unknown. This specification can be seen as a change-point problem of variable dimension in irregular, discrete space. We illustrate our method through an analysis of oral cavity cancer mortality rates in Germany and compare the results with those obtained by the commonly used Bayesian disease mapping method of Besag, York and Mollie (1991).
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-1496-4 |
Language: | English |
Item ID: | 1496 |
Date Deposited: | 04. Apr 2007 |
Last Modified: | 04. Nov 2020, 12:45 |