Abstract
The paper deals with sets of distributions which are given by moment conditions for the distributions and convex constraints on derivatives of their c.d.fs. A general albeit simple method for the study of their extremal structure, extremal decomposition and topological or measure theoretical properties is developed. Its power is demonstrated by the application to bell-shaped distributions. Extreme points of their moment sets are characterized completely (thus filling a gap in the previous theory) and inequalities of Tchebysheff type are derived by means of general integral representation theorems. Some key words: Moment sets, Tschebysheff inequalities, extremal bell-shaped distributions
Dokumententyp: | Paper |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1510-9 |
Sprache: | Englisch |
Dokumenten ID: | 1510 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |