Abstract
Functional magnetic resonance imaging (fMRI) has led to enormous progress in human brain mapping. Adequate analysis of the massive spatiotemporal data sets generated by this imaging technique, combining parametric and non-parametric components, imposes challenging problems in statistical modelling. Complex hierarchical Bayesian models in combination with computer-intensive Markov chain Monte Carlo inference are promising tools.The purpose of this paper is twofold. First, it provides a review of general semiparametric Bayesian models for the analysis of fMRI data. Most approaches focus on important but separate temporal or spatial aspects of the overall problem, or they proceed by stepwise procedures. Therefore, as a second aim, we suggest a complete spatiotemporal model for analysing fMRI data within a unified semiparametric Bayesian framework. An application to data from a visual stimulation experiment illustrates our approach and demonstrates its computational feasibility.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Mathematik, Informatik und Statistik |
Themengebiete: | 300 Sozialwissenschaften > 310 Statistiken
500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-15173-0 |
Allianz-/Nationallizenz: | Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich. |
Sprache: | Englisch |
Dokumenten ID: | 15173 |
Datum der Veröffentlichung auf Open Access LMU: | 16. Mai 2013, 12:30 |
Letzte Änderungen: | 13. Aug. 2024, 11:44 |