Dies ist die neueste Version des Dokumentes.
Abstract
Varying-coefficient models provide a flexible framework for semi- and nonparametric generalized regression analysis. We present a fully Bayesian B-spline basis function approach with adaptive knot selection. For each of the unknown regression functions or varying coefficients, the number and location of knots and the B-spline coefficients are estimated simultaneously using reversible jump Markov chain Monte Carlo sampling. The overall procedure can therefore be viewed as a kind of Bayesian model averaging. Although Gaussian responses are covered by the general framework, the method is particularly useful for fundamentally non-Gaussian responses, where less alternatives are available. We illustrate the approach with a thorough application to two data sets analysed previously in the literature: the kyphosis data set with a binary response and survival data from the Veteran’s Administration lung cancer trial.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Mathematik, Informatik und Statistik > Statistik |
Themengebiete: | 300 Sozialwissenschaften > 310 Statistiken |
URN: | urn:nbn:de:bvb:19-epub-15177-3 |
ISSN: | 1471-082X |
Allianz-/Nationallizenz: | Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich. |
Sprache: | Englisch |
Dokumenten ID: | 15177 |
Datum der Veröffentlichung auf Open Access LMU: | 16. Mai 2013, 12:06 |
Letzte Änderungen: | 04. Nov. 2020, 12:55 |
Alle Versionen dieses Dokumentes
-
Bayesian Varying-coefficient Models using Adaptive Regression Splines. (deposited 05. Apr. 2007)
- Bayesian varying-coefficient models using adaptive regression splines. (deposited 16. Mai 2013, 12:06) [momentan angezeigt]