Abstract
The reliable analysis of interval data (coarsened data) is one of the most promising applications of imprecise probabilities in statistics. If one refrains from making untestable, and often materially unjustified, strong assumptions on the coarsening process, then the empirical distribution of the data is imprecise, and statistical models are, in Manski’s terms, partially identified. We first elaborate some subtle differences between two natural ways of handling interval data in the dependent variable of regression models, distinguishing between two different types of identification regions, called Sharp Marrow Region (SMR) and Sharp Collection Region (SCR) here. Focusing on the case of linear regression analysis, we then derive some fundamental geometrical properties of SMR and SCR, allowing a comparison of the regions and providing some guidelines for their canonical construction. Relying on the algebraic framework of adjunctions of two mappings between partially ordered sets, we characterize SMR as a right adjoint and as the monotone kernel of a criterion function based mapping, while SCR is indeed interpretable as the corresponding monotone hull. Finally we sketch some ideas on a compromise between SMR and SCR based on a set-domained loss function. This paper is an extended version of a shorter paper with the same title, that is conditionally accepted for publication in the Proceedings of the Eighth International Symposium on Imprecise Probability: Theories and Applications. In the present paper we added proofs and the seventh chapter with a small Monte-Carlo-Illustration, that would have made the original paper too long.
Dokumententyp: | Paper |
---|---|
Publikationsform: | Submitted Version |
Keywords: | partial identification, imprecise probabilities, interval data, sharp identification regions, coarse data, adjunctions, partially ordered sets, linear regression model, best linear predictor, set-domained loss function |
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Technische Reports |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-15231-3 |
Sprache: | Englisch |
Dokumenten ID: | 15231 |
Datum der Veröffentlichung auf Open Access LMU: | 22. Mai 2013, 13:53 |
Letzte Änderungen: | 04. Nov. 2020, 12:55 |