Logo Logo
Switch Language to German

Toutenburg, Helge; Fieger, A. and Schaffrin, B. (1999): Approximate Confidence Regions for Minimax-Linear Estimators. Collaborative Research Center 386, Discussion Paper 166 [PDF, 295kB]


Minimax estimation is based on the idea, that the quadratic risk function for the estimate β is not minimized over the entire parameter space R^K, but only over an area B(β) that is restricted by a priori knowledge. If all restrictions define a convex area, this area can often be enclosed in an ellipsoid of the form B(β) = { β : β' Tβ ≤ r }. The ellipsoid has a larger volume than the cuboid. Hence, the transition to an ellipsoid as a priori information represents a weakening, but comes with an easier mathematical handling. Deriving the linear Minimax estimator we see that it is biased and non-operationable. Using an approximation of the non-central χ^2-distribution and prior information on the variance, we get an operationable solution which is compared with OLSE with respect to the size of the corresponding confidence intervals.

Actions (login required)

View Item View Item