Abstract
Minimax estimation is based on the idea, that the quadratic risk function for the estimate β is not minimized over the entire parameter space R^K, but only over an area B(β) that is restricted by a priori knowledge. If all restrictions define a convex area, this area can often be enclosed in an ellipsoid of the form B(β) = { β : β' Tβ ≤ r }. The ellipsoid has a larger volume than the cuboid. Hence, the transition to an ellipsoid as a priori information represents a weakening, but comes with an easier mathematical handling. Deriving the linear Minimax estimator we see that it is biased and non-operationable. Using an approximation of the non-central χ^2-distribution and prior information on the variance, we get an operationable solution which is compared with OLSE with respect to the size of the corresponding confidence intervals.
Dokumententyp: | Paper |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1555-7 |
Sprache: | Englisch |
Dokumenten ID: | 1555 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |