Abstract
Weighting is a largely used concept in many fields of statistics and has frequently caused controversies on its justification and profit. In this paper, we analyze a weighted version of the well-known local polynomial regression estimators, derive their asymptotic bias and variance, and find that the conflict between the asymptotically optimal weighting scheme and the practical requirements has a surprising counterpart in sampling theory, leading us back to the discussion on Basu's (1971) elephants.
Dokumententyp: | Paper |
---|---|
Keywords: | Bias reduction, nonparametric smoothing, local polynomial modelling, kernel smoothing, leverage values, Horvitz-Thompson theorem, stratification |
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1834-7 |
Sprache: | Englisch |
Dokumenten ID: | 1834 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |