Abstract
In general, risk of an extreme outcome in financial markets can be expressed as a function of the tail copula of a high-dimensional vector after standardizing marginals. Hence it is of importance to model and estimate tail copulas. Even for moderate dimension, nonparametrically estimating a tail copula is very inefficient and fitting a parametric model to tail copulas is not robust. In this paper we propose a semi-parametric model for tail copulas via an elliptical copula. Based on this model assumption, we propose a novel estimator for the tail copula, which proves favourable compared to the empirical tail copula, both theoretically and empirically.
Dokumententyp: | Paper |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Sonderforschungsbereich 386
Sonderforschungsbereiche > Sonderforschungsbereich 386 |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-1836-8 |
Sprache: | Englisch |
Dokumenten ID: | 1836 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Apr. 2007 |
Letzte Änderungen: | 04. Nov. 2020, 12:45 |