Abstract
The structure of LaAlO3 has been investigated around the phase transition at T(c) ≃ 800 K by neutron powder diffraction in vacuum and by X-ray powder diffraction under nitrogen atmosphere as well as by a very high resolution synchrotron experiment in air. The results were analysed in frame of the Landau theory using the fluctuation-dissipation theorem to relate the susceptibility to the atomic displacement parameters. The room temperature structure is a rhombohedrally distorted perovskite structure, space group R3c, which undergoes a transition to the ideal perovskite structure, space group Pm3m, at high temperatures. The order parameter is a rotation of the O6-octahedron described by one χ(O)-parameter. This parameter and the spontaneous strain (c/a - √6), as well as the relevant atomic displacement parameter U(op) 11(O) in the order parameter system, show a critical behaviour in agreement with a second order phase transition. Although the critical exponents of the order parameter and strain show the expected coupling behaviour, there is a striking difference of the transition temperature: the metric becomes cubic roughly 30 K below the proper T(c). This is related to spontaneous formation of domains imposing the average cubic symmetry via internal stresses.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences > Crystallography and Materials Science |
Subjects: | 500 Science > 550 Earth sciences and geology |
Language: | English |
Item ID: | 18506 |
Date Deposited: | 10. Mar 2014, 14:09 |
Last Modified: | 29. Apr 2016, 09:15 |