Abstract
In this paper we extend the standard approach of correlation structure analysis in order to reduce the dimension of highdimensional statistical data. The classical assumption of a linear model for the distribution of a random vector is replaced by the weaker assumption of a model for the copula. For elliptical copulae a correlation-like structure remains but different margins and non-existence of moments are possible. Moreover, elliptical copulae allow also for a copula structure analysis of dependence in extremes. After introducing the new concepts and deriving some theoretical results we observe in a simulation study the performance of the estimators: the theoretical asymptotic behavior of the statistics can be observed even for a sample of only 100 observations. Finally, we test our method on real financial data and explain differences between our copula based approach and the classical approach. Our new method yields a considerable dimension reduction also in non-linear models.
Item Type: | Paper |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Collaborative Research Center 386 Special Research Fields > Special Research Field 386 |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-1871-2 |
Language: | English |
Item ID: | 1871 |
Date Deposited: | 11. Apr 2007 |
Last Modified: | 04. Nov 2020, 12:46 |