Abstract
The pressure-induced structural changes in perovskite-type (ABO 3) Pb-based relaxor ferroelectrics are studied on the basis of in situ single-crystal synchrotron x-ray diffraction and Raman scattering experiments on PbSc0.5Ta0.5O3 and PbSc 0.5Nb0.5O3 conducted under hydrostatic conditions up to 30 GPa. Complementary density functional theory calculations have been performed to compare the stability of various atomic configurations for both compounds at high pressures. By combining the experimental and theoretical results, the following sequence of structural transformations is proposed. At a characteristic pressure p1 the mesoscopic polar order is violated and a local antipolar order of Pb atoms as well as quasidynamical long-range order of antiphase octahedral tilts is developed. These structural changes facilitate the occurrence of a continuous phase transition at pc1p1 from cubic to a nonpolar rhombohedral structure comprising antiphase octahedral tilts of equal magnitude (a-a-a-). At a characteristic pressure p2 pc1 the octahedral tilts around the cubic [100], [010], and [001] directions become different from each other on the mesoscopic scale. The latter precedes a second phase transition at p c2, which involves long-range order of Pb antipolar displacements along cubic [uv0] directions and a compatible mixed tilt system (a +b-b-) or long-range ordered antiphase tilts with unequal magnitudes (a0b-b-) without Pb displacement ordering. The phase-transition pattern at pc2 depends on the fine-scale degree of chemical B-site order in the structure.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences > Crystallography and Materials Science |
Subjects: | 500 Science > 550 Earth sciences and geology |
Language: | English |
Item ID: | 18728 |
Date Deposited: | 10. Mar 2014, 14:13 |
Last Modified: | 04. Nov 2020, 13:00 |