Abstract
Resistive memory switching was investigated in titanates and niobates of the type A nB nO 3n+2 and in the high-T c superconductor Bi 2Sr 2CaCu 2O 8+δ. We studied the switching by current injection perpendicular to the layers. Both dc and pulsed measurements were performed. Out-of-plane transport properties were investigated by measurements of the resistance and current-voltage characteristics (IVs) vs. temperature for different resistive states. The critical temperature of superconducting transition and the critical current of intrinsic Josephson junctions were also analyzed for different resistive states in Bi 2Sr 2CaCu 2O 8+δ. The resistive memory switching was explained in terms of doping of the conducting layers, which is induced by trapped charges in the insulating layers. The charged insulating layers act as a floating gate and reduce or increase the carrier concentration in the conducting layers, respectively. We found that all studied materials demonstrate a different type of non-persistent resistive switching at low temperatures. This type of switching shows up in a specific form of current-voltage characteristics with a pronounced back-bending often called s-shaped IV. Both types of resistive switching with and without memory effect were analyzed in terms of electron overheating. We examine the role of hot electrons and discuss additional factors, which might lead to persistent resistive states.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences > Crystallography and Materials Science |
Subjects: | 500 Science > 530 Physics 500 Science > 540 Chemistry 500 Science > 550 Earth sciences and geology |
Language: | English |
Item ID: | 18730 |
Date Deposited: | 10. Mar 2014, 14:13 |
Last Modified: | 04. Nov 2020, 13:00 |