Abstract
Angle-resolved photoemission spectroscopy (ARPES) is a powerful technique for the study of electronic structure, but it lacks a direct ability to study buried interfaces between two materials. We address this limitation by combining ARPES with soft X-ray standing-wave (SW) excitation (SWARPES), in which the SW profile is scanned through the depth of the sample. We have studied the buried interface in a prototypical magnetic tunnel junction La0.7Sr 0.3MnO3/SrTiO3. Depth-and momentum-resolved maps of Mn 3d eg and t2g states from the central, bulk-like and interface-like regions of La0.7Sr0.3MnO 3 exhibit distinctly different behavior consistent with a change in the Mn bonding at the interface. We compare the experimental results to state-of-the-art density-functional and one-step photoemission theory, with encouraging agreement that suggests wide future applications of this technique.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences > Crystallography and Materials Science |
Subjects: | 500 Science > 530 Physics 500 Science > 540 Chemistry 500 Science > 550 Earth sciences and geology |
Language: | English |
Item ID: | 18811 |
Date Deposited: | 10. Mar 2014, 14:15 |
Last Modified: | 04. Nov 2020, 13:00 |