Logo Logo
Help
Contact
Switch Language to German

Hofmann, J.P.; Rohrlack, S.F.; Heß, F.; Goritzka, J.C.; Krause, P.P.T.; Seitsonen, A.P.; Moritz, Wolfgang and Over, Herbert (2012): Adsorption of chlorine on Ru(0001)-A combined density functional theory and quantitative low energy electron diffraction study. In: Surface Science, Vol. 606, No. 3-4: pp. 297-304

Full text not available from 'Open Access LMU'.

Abstract

Chlorine adsorption on Ru(0001) surface has been studied by a combined density functional theory (DFT) and quantitative low energy electron diffraction (LEED) approach. The (√3 × √3)R30°-Cl phase with Θ Cl = 1/3 ML and chlorine sitting in fcc sites has been identified by DFT calculations as the most stable chlorine adsorbate structure on Ru(0001) with an adsorption energy of - 220 kJ/mol. The atomic geometry of (√3 × √3)R30°-Cl was determined by quantitative LEED. The achieved agreement between experimental and simulated LEED data is quantified by a Pendry factor of r P = 0.19 for a fcc adsorption site with a Cl-Ru bond length of 2.52 Å. At chlorine coverages beyond 1/3 ML LEED reveals diffuse diffraction rings, indicating a continuous compression of the hexagonal Cl overlayer with a preferred average Cl-Cl distance of 4.7 Å in the (√3 × √3)R30°-Cl, Θ Cl = 1/3 ML phase towards 3.9 Å at saturation coverage of 0.48 ML.

Actions (login required)

View Item View Item