Abstract
Density functional theory (DFT) calculations reveal that adding ametallic overlayer on LaAlO3/SrTiO3(001) alters significantly theelectric field within the polar LaAlO3 film. For Al or Ti metal contactsthe electric field is eliminated, leading to a suppression of thethickness-dependent insulator-to-metal transition observed in uncoveredfilms. Independent of the LaAlO3 thickness, both the surface and theinterface are metallic, with an enhanced carrier density at theinterface relative to LaAlO3/SrTiO3(001) after the metallizationtransition. Monolayer thick contacts of Ti develop a finite magneticmoment and for a thin SrTiO3 substrate induce a spin-polarizedtwo-dimensional electron gas at the n-type interface, due to confinementeffects in the SrTiO3 slab. For transition (Fe, Co, Pt) and noble metalcontacts (Cu, Ag, Au) a finite and even enhanced (Au) internal electricfield develops within LaAlO3. Results for a representative series ofmetallic overlayers on LaAlO3/SrTiO3(001) (Na, Al; Ti, Fe, Co, Pt; Cu,Ag, Au) reveal broad variation of band alignment, size of Schottkybarrier, carrier concentration and lattice polarization at theLaAlO3/SrTiO3(001) interface. The identified relationship to the size ofwork function of the metal on LaAlO3 provides guidelines on how thecarrier density at the LaAlO3/SrTiO3 interface can be controlled by thechoice of the metal contact.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences > Crystallography and Materials Science |
Subjects: | 500 Science > 530 Physics 500 Science > 540 Chemistry 500 Science > 550 Earth sciences and geology |
Language: | English |
Item ID: | 18848 |
Date Deposited: | 10. Mar 2014, 14:15 |
Last Modified: | 04. Nov 2020, 13:00 |