Abstract
We examined the texture evolution in a superelastic Ni50.7Ti49.3 (numbers indicate at.\%) alloy under applied uniaxial stress using high-energy synchrotron X-ray diffraction in transmission geometry. Texture information is identified from the intensity variations along Debye-Scherrer rings recorded on area detector diffraction images. The 1 1 0A austenite plane normals are aligned in the rolling direction and 2 0 0A is in the transverse direction. Due to the B2-B19′ lattice correspondence, the 1 1 0A peak splits into four martensite peaks 0 2 0M, over(1, ̄) 1 1M, 0 0 2M and 1 1 1M. The stress-induced martensite is strongly textured from twin variant selection in the stress field with 0 2 0M aligned in the loading direction while the maxima corresponding to over(1, ̄) 1 1M, 0 0 2M and 1 1 1M are at 60°, 67° and 75° from the loading direction. (B19′ unit cell setting: a = 2.87 Å, b = 4.59 Å, c = 4.1 Å, γ = 96.2°). A comparison between the experimental and recalculated distribution densities for the polycrystalline NiTi shows a reasonable agreement. In addition, we compare our experimental results with a micromechanical model which is based on total energy minimization. In this case, we also observe an overall agreement.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences > Crystallography and Materials Science |
Subjects: | 500 Science > 550 Earth sciences and geology |
Language: | English |
Item ID: | 18956 |
Date Deposited: | 10. Mar 2014, 14:17 |
Last Modified: | 04. Nov 2020, 13:00 |