Abstract
Nanoscale exsolutions of the canted antiferromagnet hematite(alpha-Fe(2)O(3)) and the room temperature paramagnet ilmenite(FeTiO(3)) show a surprisingly stable room temperature remanentmagnetization, making the material interesting for spintronicsapplications. To understand the nature of this phenomenon at the atomicscale, density functional theory calculations with an on-site Coulombrepulsion parameter were performed on Fe(2-x)Ti(x)O(3), varying theconcentration, distribution and charge state of cations. We find thatthe polar discontinuity at the interface is accommodated by theformation of a mixed Fe(2+)/Fe(3+) layer. The uncompensated interfacemoments give rise to ferrimagnetism in this system. We also explore theeffect of strain, showing that it can be used to tune the electronicproperties (e.g. band gap, position of impurity levels). Furthermore, wefind that epitaxial growth on an Al(2)O(3)(0001) substrate isenergetically unfavorable compared to substrates with a larger laterallattice parameter, providing thereby a guideline for an optimal choiceof the substrate in growth experiments.
Item Type: | Book Section |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences > Crystallography and Materials Science |
Subjects: | 500 Science > 530 Physics 500 Science > 540 Chemistry 500 Science > 550 Earth sciences and geology |
Language: | English |
Item ID: | 18964 |
Date Deposited: | 10. Mar 2014, 14:17 |
Last Modified: | 04. Nov 2020, 13:00 |