Abstract
A novel point process model continuous in space-time is proposed for quantifying the transmission dynamics of the two most common meningococcal antigenic sequence types observed in Germany 2002-2008. Modelling is based on the conditional intensity function (CIF) which is described by a superposition of additive and multiplicative components. As an epidemiological interesting finding, spread behaviour was shown to depend on type in addition to age: basic reproduction numbers were 0.25 (95% CI 0.19-0.34) and 0.11 (95% CI 0.07-0.17) for types B:P1.7-2,4:F1-5 and C:P1.5,2:F3-3, respectively. Altogether, the proposed methodology represents a comprehensive and universal regression framework for the modelling, simulation and inference of self-exciting spatio-temporal point processes based on the CIF. Usability of the modelling in biometric practice is promoted by an implementation in the R package surveillance.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Postprint |
Keywords: | Conditional intensity function; Infectious disease surveillance data; Spatiotemporal point process; Stochastic epidemic modeling |
Fakultät: | Mathematik, Informatik und Statistik > Statistik |
Themengebiete: | 300 Sozialwissenschaften > 310 Statistiken
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-25195-2 |
ISSN: | 0099-4987 |
Sprache: | Englisch |
Dokumenten ID: | 25195 |
Datum der Veröffentlichung auf Open Access LMU: | 28. Aug. 2015, 13:50 |
Letzte Änderungen: | 04. Nov. 2020, 13:06 |