Abstract
Varying-coefficient models with categorical effect modifiers are considered within the framework of generalized linear models. We distinguish between nominal and ordinal effect modifiers, and propose adequate Lasso-type regularization techniques that allow for (1) selection of relevant covariates, and (2) identification of coefficient functions that are actually varying with the level of a potentially effect modifying factor. For computation, a penalized iteratively reweighted least squares algorithm is presented. We investigate large sample properties of the penalized estimates; in simulation studies, we show that the proposed approaches perform very well for finite samples, too. In addition, the presented methods are compared with alternative procedures, and applied to real-world data.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik
Mathematik, Informatik und Statistik > Statistik > Lehrstühle/Arbeitsgruppen > Seminar für angewandte Stochastik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-31517-1 |
Allianz-/Nationallizenz: | Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich. |
Sprache: | Englisch |
Dokumenten ID: | 31517 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Dez. 2016, 14:05 |
Letzte Änderungen: | 04. Nov. 2020, 13:08 |