Logo Logo
Hilfe
Hilfe
Switch Language to English
Anchordoqui, Luis A.; Antoniadis, Ignatios; Goldberg, Haim; Huang, Xing; Luest, Dieter; Taylor, Tomasz R. (2015): Stringy origin of diboson and dijet excesses at the LHC. In: Physics Letters B, Vol. 749: S. 484-488
[img]
Vorschau
1MB

Abstract

Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8-2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W- pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1) field with very small coupling to leptons. The Drell-Yan bounds are then readily avoided because of the leptophobic nature of the massive Z' gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau-Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Z gamma topology would become a signature consistent only with a stringy origin. (C) 2015 The Authors. Published by Elsevier B.V.