Abstract
Haemanthus coccineus extracts (HCE) have traditionally been used to treat a variety of diseases, like febrile colds or asthma. Since new therapeutic options against inflammatory processes are still urgently needed, we aimed to pharmacologically characterise the anti-inflammatory potential of HCEin vitro and in vivo and to identify the underlying bioactive component(s). The action of HCE on oedema formation and leucocyte infiltration were analysed in two murine models of inflammation (dermal oedema induced by arachidonic acid and croton oil;kidney injury caused by unilateral ureteral obstruction). The interaction of leucocytes with endothelial cells (ECs) as well as the activation parameters of these two cell types were analysed. Moreover, the nuclear factor B (NFB) pathway was investigated in detail in ECs. Using different fractions of HCE, the bioactive principle was identified. In vivo, HCE (450mg/kg orally or 2mg/kg intraperitoneally) inhibited oedema formation, leucocyte infiltration and cytokine synthesis. In vitro, HCE (100-300ng/ml) blocked leucocyte-EC interaction as well as the activation of isolated leucocytes (cytokine synthesis and proliferation) and of primary ECs (adhesion molecule expression). HCE suppressed NFB-dependent gene transcription in the endothelium, but did not interfere with the NFB activation cascade (IB degradation, p65 nuclear translocation and NFB DNA-binding activity). The alkaloid narciclasine was elucidated as the bioactive compound responsible for the anti-inflammatory action of HCE. Our study highlights HCE and its main alkaloid narciclasine as novel interesting approach for the treatment of inflammation-related disorders.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy > Department of Pharmacy |
Subjects: | 500 Science > 540 Chemistry |
URN: | urn:nbn:de:bvb:19-epub-34298-5 |
ISSN: | 1582-4934 |
Language: | English |
Item ID: | 34298 |
Date Deposited: | 15. Feb 2017, 16:03 |
Last Modified: | 04. Nov 2020, 13:12 |