Abstract
Antitumoral siRNA and miRNA delivery was demonstrated by epidermal growth factor receptor (EGFR) targeted oligoaminoamide polyplexes. For this purpose, the T-shaped lipo-oligomer 454 was used to complex RNA into a core polyplex, which was subsequently functionalized with the targeting peptide ligand GE11 via a polyethylene glycol (PEG) linker. To this end, free cysteines on the surface of 454 polyplex were coupled with a maleimide-PEG-GE11 reagent (Mal-GE11). Resulting particles with sizes of 120-150 nm showed receptor-mediated uptake into EGFR-positive T24 bladder cancer cells, MDA-MB 231 breast cancer cells and Huh7 liver cancer cells. Furthermore, these formulations led to ligand-dependent gene silencing. RNA interference (RNAi) triggered antitumoral effects were observed for two different therapeutic RNAs, a miRNA-200c mimic or EG5 siRNA. Using polyplexes modified with a ratio of 0.8 molar equivalents of Mal-GE11, treatment of T24 or MDA-MB 231 cancer cells with miR-200c led to the expected decreased proliferation and migration, changes in cell cycle and enhanced sensitivity towards doxorubicin. Delivery of EG5 siRNA into Huh7 cells resulted in antitumoral activity with G2/M arrest, triggered by loss of mitotic spindle separation and formation of mono-astral spindles. These findings demonstrate the potential of GE11 ligand-containing RNAi polyplexes for cancer treatment.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy > Department of Pharmacy |
Subjects: | 500 Science > 540 Chemistry |
ISSN: | 0957-4484 |
Language: | English |
Item ID: | 48426 |
Date Deposited: | 27. Apr 2018, 08:15 |
Last Modified: | 04. Nov 2020, 13:26 |