Abstract
Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inhibit modifications of different H3 sites and reduce H3 tail dynamics in nucleosomes. These effects are caused by modulations of electrostatic interactions of H3 tails with linker DNA and largely depend on the C-terminal domains of linker histones. In agreement, linker histone occupancy and H3 tail modifications segregate on a genome-wide level. Charge-modulating modifications such as phosphorylation and acetylation weaken transient H3 tail-linker DNA interactions, increase H3 tail dynamics, and, concomitantly, enhance general modifiability. We propose that alterations of H3 tail-linker DNA interactions by linker histones and charge-modulating modifications execute basal control mechanisms of chromatin function.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy > Department of Biochemistry |
Research Centers: | Center for Integrated Protein Science Munich (CIPSM) |
Subjects: | 500 Science > 540 Chemistry |
ISSN: | 1097-2765 |
Language: | English |
Item ID: | 48521 |
Date Deposited: | 27. Apr 2018, 08:15 |
Last Modified: | 04. Nov 2020, 13:26 |