Logo Logo
Switch Language to German
Nguyen, O. N. Phuong; Böhm, Sybille; Gießl, Andreas; Butz, Elisabeth S.; Wolfrum, Uwe; Brandstätter, Johann H.; Wahl-Schott, Christian; Biel, Martin; Becirovic, Elvir (2016): Peripherin-2 differentially interacts with cone opsins in outer segments of cone photoreceptors. In: Human Molecular Genetics, Vol. 25, No. 12: pp. 2367-2377
Full text not available from 'Open Access LMU'.


Peripherin-2 is a glycomembrane protein exclusively expressed in the light-sensing compartments of rod and cone photoreceptors designated as outer segments (OS). Mutations in peripherin-2 are associated with degenerative retinal diseases either affecting rod or cone photoreceptors. While peripherin-2 has been extensively studied in rods, there is only little information on its supramolecular organization and function in cones. Recently, we have demonstrated that peripherin-2 interacts with the light detector rhodopsin in OS of rods. It remains unclear, however, if peripherin-2 also binds to cone opsins. Here, using a combination of co-immunoprecipitation analyses, transmission electron microscopy (TEM)-based immunolabeling experiments, and quantitative fluorescence resonance energy transfer (FRET) measurements in cone OS of wild type mice, we demonstrate that peripherin-2 binds to both, S-opsin and M-opsin. However, FRET-based quantification of the respective interactions indicated significantly less stringent binding of peripherin-2 to S-opsin compared to its interaction with M-opsin. Subsequent TEM-studies also showed less co-localization of peripherin-2 and S-opsin in cone OS compared to peripherin-2 and M-opsin. Furthermore, quantitative FRET analysis in acutely isolated cone OS revealed that the cone degeneration-causing V268I mutation in peripherin-2 selectively reduced binding to M-opsin without affecting the peripherin-2 interaction to S-opsin or rhodopsin. The differential binding of peripherin-2 to cone opsins and the mutant-specific interference with the peripherin-2/M-opsin binding points to a novel role of peripherin-2 in cones and might contribute to understanding the differential penetrance of certain peripherin-2 mutations in rods and cones. Finally, our results provide a proof-of-principle for quantitative FRET measurements of protein-protein interactions in cone OS.