Abstract
We analyze a two-player game of strategic experimentation with two-armed bandits. Each player has to decide in continuous time whether to use a safe arm with a known payoff or a risky arm whose likelihood of delivering payoffs is initially unknown. The quality of the risky arms is perfectly negatively correlated between players. In marked contrast to the case where both risky arms are of the same type, we find that learning will be complete in any Markov perfect equilibrium if the stakes exceed a certain threshold, and that all equilibria are in cutoff strategies. For low stakes, the equilibrium is unique, symmetric, and coincides with the planner's solution. For high stakes, the equilibrium is unique, symmetric, and tantamount to myopic behavior. For intermediate stakes, there is a continuum of equilibria.
Dokumententyp: | Paper |
---|---|
Keywords: | Strategic Experimentation, Two-Armed Bandit, Exponential Distribution, Poisson Process, Bayesian Learning, Markov Perfect Equilibrium |
Fakultät: | Volkswirtschaft
Volkswirtschaft > Munich Discussion Papers in Economics Volkswirtschaft > Munich Discussion Papers in Economics > Informationsökonomik Volkswirtschaft > Munich Discussion Papers in Economics > Mathematische Methoden Volkswirtschaft > Munich Discussion Papers in Economics > Spieltheorie Volkswirtschaft > Lehrstühle > Seminar für Dynamische Modellierung (aufgelöst) |
Themengebiete: | 300 Sozialwissenschaften > 300 Sozialwissenschaft, Soziologie
300 Sozialwissenschaften > 330 Wirtschaft |
JEL Classification: | C73, D83, H41, O32 |
URN: | urn:nbn:de:bvb:19-epub-5332-0 |
Sprache: | Englisch |
Dokumenten ID: | 5332 |
Datum der Veröffentlichung auf Open Access LMU: | 03. Aug. 2008, 19:32 |
Letzte Änderungen: | 04. Nov. 2020, 19:41 |