Logo Logo
Help
Contact
Switch Language to German
Occelli, Laurence M.; Schön, Christian; Seeliger, Mathias W.; Biel, Martin; Michalakis, Stylianos; Petersen-Jones, Simon M. (2017): Gene Supplementation Rescues Rod Function and Preserves Photoreceptor and Retinal Morphology in Dogs, Leading the Way Toward Treating Human PDE6A-Retinitis Pigmentosa. In: Human Gene therapy, Vol. 28, No. 12: pp. 1189-1201
Full text not available from 'Open Access LMU'.

Abstract

Mutations in the phosphodiesterase 6A gene (PDE6A) result in retinitis pigmentosa (RP) type 43 (RP43) and are responsible for about 4% of autosomal recessive RP. There is currently no treatment for this blinding condition. The aim of this project was to use a large-animal model to test a gene supplementation viral vector designed to be translated for use in a clinical trial for the treatment of RP43. Seven Pde6a -/puppies were given sub-retinal injections of an adeno-associated viral vector (AAV) serotype 2/8 delivering human PDE6A cDNA under control of a short rhodopsin promoter (AAV8-PDE6A). Three puppies received * 1.1011 vg in one eye and four puppies * 5.1011 vg/per eye, with both eyes being injected in two animals. In vivo outcome measures included vision testing and electroretinography (ERG), as well as fundus and spectral domain-optical coherence tomography imaging. Some puppies were euthanized and their eyes processed for immunohistochemistry. All puppies had improved rod-mediated vision in the treated eye. ERGs showed improved rod-mediated responses in the higher-dose group but in only one of the lower-dose group animals. Receptor+ thickness was preserved and photoreceptor morphology improved in the treated retinal regions in all puppies. Treatment resulted in PDE6A transgene expression, accompanied by much increased levels of Pde6b, in rod outer segments in the injected retinal regions. There were several indications of improved retinal health in the PDE6A-expressing regions, including lack of abnormal cyclic guanosine monophosphate accumulation, appropriate rod opsin localization to the outer segments with a large reduction in mislocalization to other regions of the rod cell, and reduced Mu <spacing diaeresis> ller cell activation. Additionally, cone photoreceptors showed morphological improvement in the treated region, with normal-appearing inner and outer segments. AAV8-PDE6A gene supplementation therapy restored rod vision in Pde6a -/-puppies and preserved retinal morphology. These positive outcomes are an important step toward a human clinical trial to treat PDE6A-RP.