Abstract
Dissecting the complex network of epigenetic modifications requires tools that combine precise recognition of DNA sequences with the capability to modify epigenetic marks. The CRISPR/Cas system has been proven to be a valuable addition to existing methodologies that fulfill these tasks. So far, sequence-specific editing of epigenetic modifications such as DNA methylation and histone posttranslational modifications relied on direct fusions of enzymatically inactivated Cas9 (dCas9) with epigenetic effectors. Here, we report a novel, modular system that facilitates the recruitment of any GFP-tagged protein to desired genomic loci. By fusing dCas9 to a GFP-binding nanobody (GBP) we demonstrate that prevalent epigenetic modifications at mouse major satellite repeats can be erased or set de novo by recruiting GFP-coupled catalytic domains of TET1 and DNMT3A, respectively. Furthermore, we construct an inducible expression system that enables a temporally controlled expression of both GBP-dCas9 and the effector protein. Thus, our approach further expands the CRISPR/Cas toolbox for site-specific manipulation of epigenetic modifications with a modular and easy-to-use system.
| Dokumententyp: | Zeitschriftenartikel | 
|---|---|
| Fakultät: | Biologie > Department Biologie II | 
| Fakultätsübergreifende Einrichtungen: | Center for Integrated Protein Science Munich (CIPSM) | 
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie 500 Naturwissenschaften und Mathematik > 540 Chemie | 
| URN: | urn:nbn:de:bvb:19-epub-55930-0 | 
| ISSN: | 1949-1034 | 
| Sprache: | Englisch | 
| Dokumenten ID: | 55930 | 
| Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018 10:00 | 
| Letzte Änderungen: | 04. Nov. 2020 13:36 | 
 
		 
	 
    



