Logo Logo
Help
Contact
Switch Language to German
Anton, Tobias; Bultmann, Sebastian (2017): Site-specific recruitment of epigenetic factors with a modular CRISPR/Cas system. In: Nucleus, Vol. 8, No. 3: pp. 279-286
[img]
Preview
Creative Commons Attribution Non-commercial No Derivatives 1MB

Abstract

Dissecting the complex network of epigenetic modifications requires tools that combine precise recognition of DNA sequences with the capability to modify epigenetic marks. The CRISPR/Cas system has been proven to be a valuable addition to existing methodologies that fulfill these tasks. So far, sequence-specific editing of epigenetic modifications such as DNA methylation and histone posttranslational modifications relied on direct fusions of enzymatically inactivated Cas9 (dCas9) with epigenetic effectors. Here, we report a novel, modular system that facilitates the recruitment of any GFP-tagged protein to desired genomic loci. By fusing dCas9 to a GFP-binding nanobody (GBP) we demonstrate that prevalent epigenetic modifications at mouse major satellite repeats can be erased or set de novo by recruiting GFP-coupled catalytic domains of TET1 and DNMT3A, respectively. Furthermore, we construct an inducible expression system that enables a temporally controlled expression of both GBP-dCas9 and the effector protein. Thus, our approach further expands the CRISPR/Cas toolbox for site-specific manipulation of epigenetic modifications with a modular and easy-to-use system.