Logo Logo
Switch Language to German
Huber, Julia; Griesshaber, Erika; Nindiyasari, Fitriana; Schmahl, Wolfgang W.; Ziegler, Andreas (2015): Functionalization of biomineral reinforcement in crustacean cuticle: Calcite orientation in the partes incisivae of the mandibles of Porcellio scaber and the supralittoral species Tylos europaeus (Oniscidea, Isopoda). In: Journal of Structural Biology, Vol. 190, No. 2: pp. 173-191
Full text not available from 'Open Access LMU'.


In arthropods the cuticle forms an exoskeleton with its physical and chemical properties adapted to functions of distinct skeletal elements. The cuticle of the partes incisivae (PI) in mandibles of terrestrial isopods is a composite of chitin-protein fibrils/fibres and minerals. It consists of an unmineralized tip, a middle region with organic fibrils reinforced mainly with amorphous calcium phosphate and a base region mineralized with amorphous calcium carbonate and calcite. In this study we extend our work on the structure and material properties of the incisive cuticle employing electron backscatter diffraction (EBSD), and investigate calcite orientation patterns in the PI of two terrestrial isopod species from different habitats. We trace small-scale differences in texture sharpness and calcite microstructure, and compare calcite organization and orientation patterns in the PI with those in the tergites of the same isopod species. We observe that in the PI calcite orientation, the degree of crystal alignment, and mode of crystalline domain assemblage is highly varied within short length scales. This contrasts to calcite organization in the tergite cuticle, where calcite has only one specific texture pattern. Such a large range in the variation of calcite organization has not been observed in other carbonate biological hard tissues, such as shells and teeth, where one specific texture and microstructure prevails. Thus, the investigated isopod species are able to control crystallization of the amorphous carbonate precursor in a differential way, most probably related to the function of the individual skeletal element and the animals’ behavior. (C) 2015 Elsevier Inc. All rights reserved.