Logo Logo
Hilfe
Hilfe
Switch Language to English

Fery, P.; Moritz, Wolfgang und Wolf, D. (1988): Structure determination of the (1×2) and (1×3) reconstructions of Pt(110) by low-energy electron diffraction. In: Physical Review B, Bd. 38, Nr. 11: S. 7275-7286 [PDF, 1MB]

[thumbnail of Moritz_Wolfgang_5793.pdf]
Vorschau
Download (1MB)

Abstract

The atomic geometry of the (1×2) and (1×3) structures of the Pt(100) surface has been determined from a low-energy electron-diffraction intensity analysis. Both structures are found to be of the missing-row type, consisting of (111) microfacets, and with similar relaxations in the subsurface layers. In both reconstructions the top-layer spacing is contracted by approximately 20% together with a buckling of about 0.17 Å in the third layer and a small lateral shift of about 0.04 Å in the second layer. Further relaxations down to the fourth layer were detectable. The surface relaxations correspond to a variation of interatomic distances, ranging from -7% to +4%, where in general a contraction of approximately 3% for the distances parallel to the surface occurs. The Pendry and Zanazzi-Jona R factors were used in the analysis, resulting in a minimum value of RP=0.36 and RZJ=0.26 for 12 beams at normal incidence for the (1×2) structure, and similar agreement for 19 beams of the (1×3) structure. The (1×3) structure has been reproducibly obtained after heating the crystal in an oxygen atmosphere of 5×10-6 mbar at 1200 K for about 30 min and could be removed by annealing at 1800 K for 45 min after which the (1×2) structure appeared again. Both reconstructed surfaces are clean within the detection limits of the Auger spectrometer. CO adsorption lifts the reconstruction in both structures. After desorption at 500 K the initial structures appear again, indicating that at least one of the reconstructions does not represent the equilibrium structure of the clean surface and may be stabilized by impurities.

Dokument bearbeiten Dokument bearbeiten