Rossmann, R.; Meyerheim, Holger L.; Jahns, V.; Wever, J.; Moritz, Wolfgang; Wolf, D.; Dornisch, D.; Schulz, H. (1992): The Ge(001) (2 × 1) reconstruction: asymmetric dimers and multilayer relaxation observed by grazing incidence X-ray diffraction. In: Surface Science, Vol. 279, Nr. 1-2: S. 199-209




Grazing incidence X-ray diffraction has been used to analyze in detail the atomic structure of the (2 × 1) reconstruction of the Ge(001) surface involving far reaching subsurface relaxations. Two kinds of disorder models, a statistical and a dynamical were taken into account for the data analysis, both indicating substantial disorder along the surface normal. This can only be correlated to asymmetric dimers. Considering a statistical disorder model assuming randomly oriented dimers the analysis of 13 symmetrically independent in-plane fractional order reflections and of four fractional order reciprocal lattice rods up to the maximum attainable momentum transfer qz = 3c* (c* = 1.77 × 10−1 Å−1) indicates the formation of asymmetric dimers characterized by R>D = 2.46(5) Å as compared to the bulk bonding length of R = 2.45 Å. The dimer height of Δ Z = 0.74(15) Å corresponds to a dimer buckling angle of 17(4)°. The data refinement using anisotropic thermal parameters leads to a bonding length of RD = 2.44(4) Å and to a large anisotropy of the root mean-square vibration amplitudes of the dimer atoms (u112) 1/2 = 0.25 Å, (u222)1/2 = 0.14 Å, (u332)1/2 = 0.50 Å). We have evidence for lateral and vertical disp tenth layer below the surface.