Abstract
We present a semantics for a language that includes sentences that can talk about their own probabilities. This semantics applies a fixed point construction to possible world style structures. One feature of the construction is that some sentences only have their probability given as a range of values. We develop a corresponding axiomatic theory and show by a canonical model construction that it is complete in the presence of the ω-rule. By considering this semantics we argue that principles such as introspection, which lead to paradoxical contradictions if naively formulated, should be expressed by using a truth predicate to do the job of quotation and disquotation and observe that in the case of introspection the principle is then consistent.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) |
Themengebiete: | 100 Philosophie und Psychologie > 100 Philosophie |
URN: | urn:nbn:de:bvb:19-epub-59205-6 |
ISSN: | 1755-0211 |
Allianz-/Nationallizenz: | Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich. |
Sprache: | Englisch |
Dokumenten ID: | 59205 |
Datum der Veröffentlichung auf Open Access LMU: | 29. Nov. 2018, 15:45 |
Letzte Änderungen: | 04. Nov. 2020, 13:38 |