Abstract
Character-level models of tokens have been shown to be effective at dealing with withintoken noise and out-of-vocabulary words. However, they often still rely on correct token boundaries. In this paper, we propose to eliminate the need for tokenizers with an end-toend character-level semi-Markov conditional random field. It uses neural networks for its character and segment representations. We demonstrate its effectiveness in multilingual settings and when token boundaries are noisy: It matches state-of-the-art part-of-speech taggers for various languages and significantly outperforms them on a noisy English version of a benchmark dataset. Our code and the noisy dataset are publicly available at http://cistern.cis.lmu.de/semiCRF
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
EU Funded Grant Agreement Number: | 740516 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 740516: NonSequeToR - Non-sequence models for tokenization replacement |
Publikationsform: | Preprint |
Fakultätsübergreifende Einrichtungen: | Centrum für Informations- und Sprachverarbeitung (CIS) |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme
000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik 400 Sprache > 400 Sprache 400 Sprache > 410 Linguistik |
URN: | urn:nbn:de:bvb:19-epub-61846-3 |
Sprache: | Englisch |
Dokumenten ID: | 61846 |
Datum der Veröffentlichung auf Open Access LMU: | 13. Mai 2019, 09:23 |
Letzte Änderungen: | 04. Nov. 2020, 13:39 |