Abstract
Introduction: Low frequency electromagnetic fields (LF-EMF) and simulated microgravity (SMG) have been observed to affect chondrogenesis. A controlled bioreactor system was developed to apply LF-EMF and SMG singly or combined during chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in 3D culture. Material and methods: An external motor gear SMG bioreactor was combined with magnetic Helmholtz coils for EMF (5 mT;15 Hz). Pellets of hMSCs (+/- TGF-beta 3)were cultured (P5) under SMG, LF-EMF, LF-EMF/SMG and control (1 g) conditions for 3 weeks. Sections were stained with safranin-O and collagen type II. Gene expression was evaluated by microarray and real-time polymerase chain reaction analysis. Results: Simulated microgravity application significantly changed gene expression;specifically, COLXA1 but also COL2A1, which represents the chondrogenic potential, were reduced (p < 0.05). Low frequency electromagnetic fields application showed no gene expression changes on a microarray basis. LF-EMF/SMG application obtained significant different expression values from cultures obtained under SMG conditions with a re-increase of COL2A1, therefore rescuing the chondrogenic potential, which had been lowered by SMG. Conclusions: Simulated microgravity lowered hypertrophy but also the chondrogenic potential of hMSCs. Combined LF-EMF/SMG provided a rescue effect of the chondrogenic potential of hMSCs although no LF-EMF effect was observed under optimal conditions. The study provides new insights into how LF-EMF and SMG affect chondrogenesis of hMSCs and how they generate interdependent effects.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin
Chemie und Pharmazie > Department Biochemie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit
500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-63080-9 |
ISSN: | 1734-1922 |
Sprache: | Englisch |
Dokumenten ID: | 63080 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:12 |
Letzte Änderungen: | 04. Nov. 2020, 13:41 |