Abstract
Embryonic development is initially controlled by maternal RNAs and proteins stored in the oocyte, until gene products gradually generated by the embryo itself take over. Major embryonic genome activation (EGA) in bovine embryos occurs at the eight-to 16-cell stage. Morphological observations, such as size of blastomeres and distribution of microvilli, suggested heterogeneity among individual cells already at this developmental stage. To address cell heterogeneity on the transcriptome level, we performed single-cell RNA sequencing of 161 blastomeres from 14 in vitro produced bovine embryos at Day 2 (n = 6) and Day 3 (n = 8) post fertilization. Complementary DNA libraries were prepared using the Single-Cell RNA-Barcoding and Sequencing protocol and sequenced. Non-supervised clustering of single-cell transcriptome profiles identified six clusters with specific sets of genes. Most embryos were comprised of cells from at least two different clusters. Sorting cells according to their transcriptome profiles resulted in a non-branched pseudo-time line, arguing against major lineage inclination events at this developmental stage. In summary, our study revealed heterogeneity of transcriptome profiles among single cells in bovine Day 2 and Day 3 embryos, suggesting asynchronous blastomere development during the phase of major EGA.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy > Department of Biochemistry Veterinary Medicine |
Subjects: | 500 Science > 540 Chemistry 600 Technology > 610 Medicine and health |
URN: | urn:nbn:de:bvb:19-epub-67159-2 |
ISSN: | 2045-2322 |
Language: | English |
Item ID: | 67159 |
Date Deposited: | 19. Jul 2019, 12:22 |
Last Modified: | 04. Nov 2020, 13:49 |