Abstract
There has been little work on modeling the morphological well-formedness (MWF) of derivatives, a problem judged to be complex and difficult in linguistics (Bauer, 2019). We present a graph auto-encoder that learns em- beddings capturing information about the com- patibility of affixes and stems in derivation. The auto-encoder models MWF in English sur- prisingly well by combining syntactic and se- mantic information with associative informa- tion from the mental lexicon.
Dokumententyp: | Konferenz |
---|---|
EU Funded Grant Agreement Number: | 740516 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 740516: NonSequeToR - Non-sequence models for tokenization replacement |
Fakultätsübergreifende Einrichtungen: | Centrum für Informations- und Sprachverarbeitung (CIS) |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme
400 Sprache > 410 Linguistik |
URN: | urn:nbn:de:bvb:19-epub-72197-4 |
Ort: | Stroudsburg, USA |
Sprache: | Englisch |
Dokumenten ID: | 72197 |
Datum der Veröffentlichung auf Open Access LMU: | 20. Mai 2020, 09:39 |
Letzte Änderungen: | 04. Nov. 2020, 13:53 |